Simple and Complex Objects: Strategies for Event Reconstruction at the LHC

Lecture III:
Combining Objects- Top, Higgs, SUSY

Marjorie Shapiro
UC Berkeley/LBNL
August 12
Outline

- **Top**
 - Production and Decay
 - Analysis Strategy
 - Object 7: b-quark jets
 - Mass Reconstruction

- **Higgs**
 - Production Modes
 - Decay Modes
 - Object 8: Photons
 - Some example searches

- **SUSY**
 - Why?
 - Production
 - Analysis Strategy
 - An example analysis
The Top Quark

- First discovered at Tevatron more than 10 years ago
 - But still have only isolated hundreds of events
- What do we know?
 - Mass: 171.4 ± 2.1 GeV (CDF/D0 combined)
 - $\sigma_{\text{Tevatron}}: 7.3 \pm 0.5\,(\text{stat}) \pm 0.5\,(\text{sys}) \pm 0.4\,(\text{lumi})\,\text{pb\,(CDF)}$

 $$8.6^{+1.3}_{-1.7}\,(\text{stat}) \pm 1.1\,(\text{sys}) \pm 0.6\,(\text{lumi})\,(\text{D0})$$
 - BR ($t \rightarrow Wb$): > 0.61 95% CL (CDF)
- LHC will produce 1 ttbar pair per second
 - Opportunity for precision measurements
- Excellent sample for testing complex reconstruction strategies
Top Production

- Strong Production: Tops are pair produced
 - (EW production of single top also possible: $W \rightarrow tb$)
- At Tevatron, production suppressed but to high top mass (small parton luminosities)
- S:B much better at LHC

90% gg, 10% qq at LHC
15% gg, 85% qq at Tevatron
Top Decay

- $t \rightarrow Wb$ BR 100% in Standard Model
- Top lifetime $\approx 5 \times 10^{-25}$ sec:
 - Decays before it hadronizes
- Top pair production gives:
 - $l + 4\text{jets}$
 - τ
 - $2l + 2\text{jets}$
 - 6 jets
 - Fully hadronic: 4/9
 - Single lepton: 4/9
 - Dilepton: 1/9

\[\text{Diagram showing different decay channels.}\]
• Top pairs yield 6 high P_T objects

• Separate search strategies for dilepton, single lepton and all-hadronic modes
 - Dileptons clean, but 2 ν so full reconstruction of mass not possible
 - Single lepton: Good S:B. This is the golden channel
 - All-hadronic: Must separate signal from QCD background: possible with b-tagging (more later)
Top Analysis Strategy

• Goal: Maximize top signal while reducing QCD background
• Top decays products central and at high P_T
 – Typical Tevatron cuts: $P_T > 15$ GeV and $\eta < 2$
• Di- and single lepton channels have missing E_T
• All channels have large total energy in our objects:
 – Define $H_T = \sum E_T$ over the reconstructed objects
• Two b-jets in final state: identification of jets from b-quarks greatly reduces background
Object 7: Jets Produced from b-quarks

- Characteristics of B decays:
 - B lifetime long: $c\tau \sim 460 \mu$
 - Semileptonic BR 10% per lepton species

- Two methods of b-tagging
 - Displaced vertex (or track from it)
 - “Soft” leptons close inside jets

- Vertex tagging has higher efficiency and better purity
 - But can combine both techniques
B-Tagging From Secondary Vertices

- Study track impact parameter
- Two options:
 - Secondary Vertex Finding: 2 or more tracks consistent with a single vertex
 - Jet Probability: Combined likelihood that all tracks come from primary vertex

Details of algorithm discussed in Aaron Dominguez's talk Monday
b-Tagging Performance Depends on Background

- Charm also long-lived: less rejection
- Performance E_T dependent
Reconstructing Top in Single Lepton Channel

- Sample contains lepton, missing energy and 4 jets
 - 2 jets reconstruct to W mass
 - 2 jets are b-jets
 - $W+b$-jet reconstructs to Top

- Many possible combinations: Can apply above constraints to pick right matching or use all combinations with appropriate probabilities

- Signal can be observed without b-tagging if strong H_T cut applied
 - b-tagging reduces combinatorial background
With b-tagging, Top dominated sample can be selected at Tevatron

Single b-tag and HT>200 GeV

Double Tag
Using b-tags to Select Correct Combination in Top Events

Signal only: All combinations of jets to form 2 Top Decays

- b-tagging increases probability of selecting correct combination: improved resolution
Top at the LHC

3 jet invariant mass

No b-tagging

Cut on W Mass

W+Jet background

After Requiring 2 b-tags:
Higgs Production at LHC
(reminder from Sally Dawson's talk)

gluon fusion

vector boson fusion

W(Z)-strahlung

Each channel has its own signature
Decays the SM Higgs

- Higgs decay modes depend on Higgs' mass
- Couples to heaviest accessible particles
- Some modes easier to observe than others
- Greatest experimental difficulties in the low mass region
Low Mass Higgs: \(h \rightarrow \gamma \gamma \)

- Direct Production has largest rate
- But cannot see dominant \(h \rightarrow bb \) decay above background
- Photon decay mode rare, but very good mass resolution possible (ECAL design critical)
- Will require every trick in the book
Object 8: Photons

- Use same variables as for electron selection, with tighter cuts
 - Unconverted photons have track veto
 - Converted photons independently analyzed by looking for the second track
 - Emphasis on shower shape variables
 - Photons shower later than electrons
 - π^0 decay to 2γ so probability of early shower twice as large
- Isolation is critical

ATLAS and CMS have different emphasis due to different detector designs, but overall performance for Higgs similar
Efficiency and Background Rejection for Higgs Photons

Atlas: Efficiency: Low and High Luminosity

CMS

Conversion Probability vs η

Atlas Jet Rejection

CMS

Pt Tracks/Et ECAL
• Even best particle ID cuts can't remove real photons
• Background from QCD production of di-photons large
 - Must subtract large background statistically

ATLAS: 100 fb$^{-1}$
Other Higgs Modes: See Sally's Talk for More

\(M_{bb} \) for \(tt\)-higgs Events

\(M_H = 100 \text{ GeV} \)

Issues:
- \(bb \) peak close to threshold
- uncertainty in rate
- large background
- difficult, busy events

\(M_{ee\mu\mu} \) for \(ZZ^* \) Events

\(M_H = 130 \text{ GeV} \)

Clean Signal, little background
Higgs Sensitivity vs Mass

3 Years Initial Luminosity Running
Supersymmetry (SUSY)

- Partner for every know particle
 - fermions have spin 0 partners
 - bosons have spin $\frac{1}{2}$ partners
- Theoretically favored extension to SM
 - Solves hierarchy problem (sparticle and particle loops cancel)
 - Provides Dark Matter candidate
 - Required by String Theory
- Requires 5 Higgs bosons (h, H, A, H+-)
If SUSY the source of EWSB, then expect sparticles at the TeV Scale

- Since each know particle has a partner, large number of sparticles to be discovered
- Spectrum of masses very model dependent
- In general, strongly interacting particles the heaviest: they decay to gauginos
- Lightest SUSY particle (LSP) stable (or quasi-stable)

 Signals with apparent missing momentum
How Fast Can SUSY be Found?

- Plot shows reach in SUSY space
- Solid regions not allowed
- Hatched region ruled out by LEP
- Contours in luminosity for specified squark and gluino masses
- Example: 100 pb-1 discovers gluino of 1 TeV

We must be ready for Physics on Day 1!
How SUSY Might First Be Observed

- Select events ≥ 4 jets and missing E_t
- M_{eff}: Sum of 4 jet and missing E_t's
- Peak correlates well with SUSY mass scale
- Example has Susy masses ~ 700 GeV
- Signal characteristic of any model with new particles (strongly coupled) at large mass
If SUSY is Found, Will Require Many Measurements to Constrain Model

- Different SUSY models will have different phenomenology
 - Must explore different regions in SUSY parameter space
- Basic Principle: Work down decay chains
 - Measure masses and mass differences
 - Test universality among generations
Using Kinematics to Constrain SUSY models

- As an example, take the squark decay to $q\, e^+\, e^-$
 - Dilepton mass has endpoint at $\chi_2-\chi_1$ mass difference
- SUSY is pair produced: For event selection require:
 - 2 isolated leptons (opposite charge, same species)
 - 2 high Pt jets
- Plot dilepton invariant mass

Clear kinematic bound observed in mass spectrum

Many other examples explored
Many Other Things are Possible Besides SUSY

- We don't know what causes EWSB
- No reason to believe SUSY is right
- Many other possibilities for new phenomena
 - New W or Z
 - WW, ZZ resonances (a la technicolor)
 - Extra Dimensions

But whatever we find, it will decay into the particles of the SM and its backgrounds will be the SM
A Mini-Black Hole as Simulated in the ATLAS Experiment

Are you ready to find this?
Conclusions

• Clean samples of the fundamental objects (jets, charged leptons, neutrinos, photon, b-jets) can be reconstructed as LHC

• Selection criteria must be optimized for relevant physics

• Simple objects can be combined to find more complex ones: W, Z, Top, Higgs, SUSY, Black Holes ...

• There's an exciting new world about to open up

You will all be part of it!