Matrix Mechanics
The theoretical ideas formulated in the seventeenth century by Isaac Newton and Galileo reigned as the fundamental scientific precepts until the year 1900, when Max Planck’s work on the emission of light from a hole in a heated hollow sphere showed that something was fundamentally amiss. Planck’s work identified a new constant of nature, called Planck’s quantum of action, that was alien to classical physics, and that evidently needed to be integrated into a revised physics, to be called quantum mechanics. A big step toward this new physics seemed to be model of the atom devised in 1913 by Niels Bohr. It was a space-time picture of the atom in which the electrons instead of spiraling inward and gradually radiating away their energies, as demanded by classical physics, were usually confined to stable orbits, which were specified in terms of Planck’s quantum of action.

The very strange thing about this model was that no light was emitted by the circling electron when it was in one of these orbits. Light was emitted, instead, when an electron jumped from one orbit to another. However, its frequency was not some average of the frequencies of the light that classical physics predicted should be emitted from the electron of each of the two orbits: it was, instead, the difference of these two frequencies.

A large amount of experimental data was being collected at that time about the energy levels of various atoms, and about the rates at which the transitions between different levels occurred. The excitations of atoms from various states to more excited states could be induced by the absorption of light, and the theory of this absorption and re-emission of light was called dispersion theory.

Intensive efforts to construct a rationally coherent quantum mechanics were being pursued by many groups, including most prominently those led by Niels Bohr in Copenhagen, Max Born in Goettingen, and Arnold Sommerfeld in Munich. But the key breakthrough was made by Werner Heisenberg.

Heisenberg was a prodigy. He entered the University of Munich in 1920 at age 18, and received his Ph. D three years later. In 1921 he published with Sommerfeld’s approval a bold and original paper on the anamolous Zeeman effect, and in 1922 had co-authored two papers with Sommerfeld, and had closely collaborated on another with Max Born. In September of 1924 he began a stay in Copenhagen where he collaborated with Bohr and co-authored a paper on dispersion theory with Bohr’s assistant Hendrik Kramers.  Thus when he returned to Goettingen in April of 1925 he was only 23, but had spent the better part of five years working intensively in close collaboration with the leaders of the field. 
The state of affairs was at that point extremely muddled, with the Copenhagen-based Bohr-Kramers-Slater dispersion theory recently falsified by data. Also, a recent closely reasoned paper by Heisenberg’s close colleague, Wolfgang Pauli, argued that the entire program of basing the theory on space-time pictures akin to Bohr’s model was a “swindle”, and called for a new mathematical foundation: “It seems to me…without doubt that not only the dynamical concept of force, but also the kinematic concept of motion of classical theory, will have to experience profound modification. …I believe that the energy and momentum values of the stationary states are much more real than “orbits”. (Pauli to Bohr, 12 December 1924). 

Armed with all this deep knowledge and wise council, and influenced by Einstein’s 1905 success in shedding unhelpful intuitions and biases concerning space and time by focusing on observable properties, Heisenberg tried to find a new foundation for atomic physics based not on a space-time picture of what was going on, but rather on mathematical connections between observable quantities. The observables in the abundant and accurate data pertaining to the dispersion of light were energy levels of the “stationary states”, whatever they were, and transition amplitudes between these states. The transition amplitudes refer to two states and thus form a square array. In order to establish some sort of correspondence with the classical idea of an atom Heisenberg needed arrays corresponding to the variable of classical physics, such as momentum, position, acceleration, etc. and needed to form the analogs of products of these “quantities”. He constructed what seemed to be the needed rules, by comparing to some apparently valid rules of dispersion theory, and discovered that, for certain quantities X and Y, XY was different from YX. This troubled Heisenberg, but did not deter him. 

Because atomic systems are complicated, Heisenberg considered first a one- dimensional anharmonic oscillator, obtained by adding an extra force term.

The results for that case, and in particular his proof that energy was strictly conserved---it was a violation of strict energy conservation that had doomed the Bohr-Kramers-Slater theory---convinced him that he had found the basic structure he needed.  Its subsequent successful applications to innumerable physical situations by thousands of physicists, with no proven failures. has borne out his optimism. 

Born was quick to point out that the arrays of numbers, with their rule of multiplication, were objects already well studied by mathematicians. They are called “matrices”, and the quantum theory based on them was, for a time, called “matrix mechanics”, particularly to distinguish it from what appeared at first to be an alternative quantum mechanics devised by Erwin Schroedinger, and called “wave mechanics”. The two theories were eventually shown to be formally equivalent by Schroedinger, whose approach did seem to provide a space-time description of the kind that Heisenberg and Pauli had deemed impossible. However, Heisenberg, Pauli, and Bohr held that the Schroedinger wave was an abstract formal structure that could be used to compute observable quantities, because of the proved formal equivalence, but that it could not be regarded as describing an actually existing space-time structure, because of the “quantum jumps” that the wave needs to undergo in order to keep it in line with human experience. 
Because of the formal equivalence of the two forms, the two names “matrix mechanics” and “wave mechanics” have largely fallen out of use now, being replaced by the more inclusive names “quantum mechanics” and “quantum theory”.
The see how these ideas work in actual practice one may consider the simplest case, in which the quantum system being examined has just two states, labeled by an index i that can take two alternative possible values, 1 or 2. Then the relevant arrays are sets of four (complex) numbers zij  where the two indices i and j each can take, independently, the value 1 or 2. If one has two such sets zij and wij  then an array called (zw)ij is defined by the rule (zw)ij = zi1w 1j   +   zi2  w2j .This is the standard rule of matrix multiplication, in this two dimensional case. 
Pauli defined four 2-by-2 matrices of interest:

(σ0) defined by ((σ0)11 = 1,  (σ0)12 = 0,    (σ0)21 = 0,  (σ0)22 =1),  

(σ1) defined by ((σ1)11 = 0,  (σ1)12  = 1,    (σ1)21 = 1,  (σ1)22 = 0),
(σ2) defined by ((σ2)11 = 0,  (σ2)12 = ─ i,  (σ2)21 = i,   (σ2)22 = 0), 
(σ3) defined by ((σ3)11 = 1,  (σ3)12 =  0,    (σ3)21 = 0,  (σ3)22 = ─ 1).
Laborious computations can then be simplified by writing matrices of interest as linear combination: a= a0σ0 + a1σ1 + a2σ2 + a3σ3 , and using the following results: 
   for any i, σi σ i = σ0;  σoσi  = σiσ0 = σi ; σ1σ2= iσ3; σ2 σ1= ─ iσ3 . 
These results follow directly from the definitions and multiplication rules specified above. Notice that in the last two equations the order in which the matrices are multiplied matters.  

The rule that connects the mathematical symbols to our observations is this:

Each elementary observation upon the system is associated with a “projection operator” P. (Projection operators P must satisfy PP= P).

Let P1 be the projection operator that corresponds in the mathematics to our knowledge that an associated set of preparation conditions have been met. 
Let P2 be the projection operator that corresponds in the mathematics to the condition that a subsequent observation fulfills an associated set of conditions. Then the predicted probability that a system known to be prepared in accordance with the conditions corresponding to P1 at time t = 0 will be observed at time t > 0 to fulfill the conditions corresponding to P2 is
                    Trace P2 (exp ─ iHt) P1 (exp iHt),

where H is the matrix that corresponds to energy, here assumed to have no explicit dependence on time, and for any X, Trace X = X11 + X22, for this 2-by-2 case. (I use units in which Planck’s constant of action is 2π.)
Suppose, for example, that P1 = (1+ σ3)/2, which corresponds the prepared system’s being in the state i = 1, and that P2 = (1 ─σ3)/2, which corresponds to the system’s being observed to be in the state i = 2. Suppose H= e σ1.
Using the fact (deducible from the power series expansion of exp x)
that (exp ─ ietσ1) = (cos et  ─ i σ1 sin et) one can easily deduce just from the rules given above that the probability identified above is (sin et)2. The calculation is carried out without referring any space-time picture of what is going on.
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