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Particle Physics at the LHC

Today’s Discussion:
o A few words about me
@ Some basic particle physics

o Fundamental particles and their interactions
o Why the Higgs is important
o What questions we’re trying to answer at particle colliders

Short break here.

@ The tools

o The Large Hadron Collider
o The ATLAS detector

@ What we’ve learned in the past 5 years

o There is a Higgs!
o ...and other interesting things.

@ Conclusion
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About Me



I went to high school in Connecticut, and then
undergrad at Boston University.

@ Majored in Physics and Math

.\]
BOSTON UNIVERSITY

@ Research with the Intermediate Energy Group (physics)
o Worked on scintillators and electronics for a muon-lifetime experiment
o Great introduction to ‘real’ research
o Travel to Switzerland for a few weeks over the summer
@ Most useful things I did in college:
@ Took two semesters of intro CS (programming)
© Found mentors early

@ Found a research project that I could continue for several semesters
@ Had fun!
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About me

Graduate School at UPenn
@ Two years of courses

@ Research during the summers (and
part-time in the second year)

e Full-time research after second year

o This varies among universities and research topics
@ I moved to CERN for three years after classes

o Will mention some of the things I worked on later

@ Back to the US to finish my dissertation

Post-doc at LBL

@ Very similar to grad school, but with a little more autonomy and
responsibility

o Typically lasts for 2-5 years in HEP
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Particle Physics 101 (In 15 Minutes)



Some Useful Terms

Some terms that will be useful today:

Cross section: rate at which a given subatomic interaction occurs,
abbrev. o
barn: a measure of cross section, abbrev. “b”

o 1b=10"%m? 1pb=10"*m’

o “Large cross section” — something that happens often (nb-pb)

o “Small cross section” — rare process (fb)

Luminosity: the rate at which particles collide in an accelerator
o Expressed in units of 1/barns, e.g. 1000 pb~' =1 fb~!

Integrated luminosity: a measure of the amount of collisions

recorded, abbrev. [ Ldt

electron Volt: a unit of energy, abbrev. “eV”

o E = mc?, so is also a unit of mass (GeV / %) or momentum (GeV/c)
o 1 proton has mass of roughly 1 GeV/c?

Planck Mass: what combination of fundamental constants (A, ¢, G)
gives units of mass?

o mp =/ =2.18x10"* kg = 1.22 x 10 GeV/c?

M. Hance
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2s orhital Nucleus

2p orbitals

1s orbital
3s orbital

1 angstrom = 100 pm

@ Usually a stable system @ Nucleons bound together

@ Mass ~ n x 1.67 x 107% kg =n GeV/c> e Foundations of chemistry
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Discovering the Standard Model

We’ve found all the pieces of the Standard Model... except perhaps one:
@ Gluon observed in late 70’s
@ W and Z bosons first observed in 1980’s

o All flavors of quarks and leptons have been found (last was t-quark in
1995)
@ No signs of the Higgs until recently
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Discovering the Standard Model
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Finding Heavy Particles

One way to find heavy particles is to look for mass resonances.
e E = mc? is only really true for particles at rest
o E? = mc* + p*c? in special relativity

pt
o mz = \/E; — (|Ipzl|c)?/c?
o Letc=1
ZO @ my =

- VE B = 5 P
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Finding Heavy Particles

One way to find heavy particles is to look for mass resonances.
e E = mc? is only really true for particles at rest
° F? = m%c4 + p*c? in special relativity
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Jets

Quarks and gluons don’t land in the detector intact — they fragment almost
immediately

@ Strong force prevents us from seeing “bare” partons

Parton level

\ Particle Jet Energy depositions

P in calorimeters

Many things produce jets:
@ Can be partons bouncing off of each other
@ ~70% of W- and Z-bosons decay into jets

Easy to find jets, hard to measure their energies.
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How do we look for the Higgs?
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o Finding the Higgs is tricky!

o Trade-off between most common decays (lots of background) and rare
decays (smaller backgrounds)
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How do we look for the Higgs?
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What can’t the Standard Model do?

Assuming we find the Higgs, the Standard Model will be “complete”. Then
what?

o Why is gravity so weak at short distances? How does gravity behave at
the quantum level?

o Black holes
o Big bang

o What is dark energy?
o What is dark matter?

@ Why is the Higgs mass so light compared to the Planck mass?

Need new theories to explain what happened at the Big Bang to produce the
universe we see today.

@ Supersymmetry (SUSY)?
o (Large) Extra Dimensions?

@ Something completely unexpected?
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Supersymmetry
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Extra Dimensions

New dimensions could be very small,
but still big enough to change how
particles behave

Look for extra dimensions via miss-
ing energy

@ New particles carry energy into
bulk

@ Very distinct events!

Extra-Dimensions

© Sabine Hossenfelder
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The Tools
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The LHC Magnets

The LHC machine is a 17-mile ring of magnets:

@ Uses superconducting NbTi wires to create dipole fields

@ Superconductivity needs cold temperatures — 100 tons of liquid helium
at 1.9 Kelvin

o Fieldsof upto 8.3 T

Heat Exchanger Pipe
Beam Pipe %
Superconducting Coils

=
|l
Helium-Ii Vessel gl

Spool Piece

Bus Bars Superconducting Bus-Ba

Iron Yoke
Non-Magnetic Collars
Vacuum Vessel

Quadrupole 1 4
Bus Bars > / Radiation Screen
7

Thermal Shield

~'v The la
\‘*/ 15-m long S X
" LHC cryodipole | .

0\ ;
i“

Protgction

M. Hance 23 / 46 Particle Physics at the LHC- July 11, 2013



The LHC in Numbers

For the 2012 run, some stats on the accelerator:
@ 8 TeV collisions
@ Bunches of protons colliding at 40 MHz
@ 20 fb~! of data per experiment
@ O(100) petabytes of data stored

After the current shutdown:
@ 14 TeV collisions
@ 3000 fb~! of data per experiment by 2030

Four main experiments:
@ ATLAS - multipurpose experiment, ~ 3000 collaborators
@ CMS - multipurpose, == 3000 collaborators
@ ALICE - heavy ion physics, ~ 1200 collaborators
@ LHCDb - bottom-quark physics, ~ 620 collaborators

M. Hance
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A Toroidal LHC ApparatuS

Tile calorimeters

N LAr hadronic end-cap and
forward calorimeters
Pixel detector

LAr electromagnetic calorimeters

Toroid magnets

Muon chambers Solenoid magnet
Semiconductor fracker

Transition radiation tracker
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How do we do science at the LHC?

Two general types of investigations:
@ Measurements of known quantities

e e.g. mass of top quark, Z-boson cross section, etc.
o Limit uncertainty on measurement as much as possible
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How do we do science at the LHC?

Two general types of investigations:
@ Measurements of known quantities

e e.g. mass of top quark, Z-boson cross section, etc.
o Limit uncertainty on measurement as much as possible

@ Searches for unobserved phenomena
o Looking for SUSY or extra dimensions

e Can focus on a specific model (SUSY) or signature (events with two
muons)
o Two possible outcomes:
@ We discover new physics!
@ We only see what the Standard Model predicts, so we can infer the absence
of new physics

Both are critical components of the overall physics program at the LHC!
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Simulation

For either measurements or searches, rely a lot on simulation.
@ Rather than building multiple LHC’s and detectors in the real world,
use computers to model them
@ We can then inject fake events into our simulated detector to see how it
responds

P:



It takes a lot of computers to handle 100 PB!

o Computing farms all over the world
@ Lots of different technologies at work:

M. Hance
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Most computers run Linux (Windows and IOS are for phones)

Data analysis: programming languages like C++ and python
Information management: making data easily available to many people,
security issues, data privacy

Low-level hardare: getting computers to talk with custom detector
components

ALY YNAN NN RFRST

Particle Physics at the LHC- July 11, 2013



So, what have we found?



(Re)-discovering the Standard Model
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What about the Higgs?

Branching ratio

Look for Higgs in all possible decays

@ Roughly 45 Higgs bosons
produced in each pb~! of data

o Can’t afford to waste any of
them!

I I L
100 120 140 160 180 200

Higgs mass (GeV)

@ Most popular decay is bb — difficult!

o b’s show up as jets, there are a lot of those, and it’s hard to measure their
energies

@ Then WW, 77, and ZZ — also hard
e Most of the time, these particles also produce jets!

@ ~7y is last, but promising

M. Hance
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What about the Higgs?

Higgs decay to diphotons is rare, but

~  powerful
e BR~ 107
N’ @ But ATLAS can measure
photons very accurately
~y

@ Use photons to figure out
invariant mass
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What we knew after 2011
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What we saw in 2012
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It looks just like we expected!
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@ Still not total confirmation yet, still need to look at other properties

@ A lot of work left to be done on the Higgs, but this is a major scientific

achievement!




% EXPERIMENT

Run Number: 191426, Event Number: 86694500
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Run Number: 186877,
Event Number: 84622334

Muon: blue
Electron: black £,
Cells; Tiles, EMC /47



And SUSY?

SUSY often produces very spectacu-
lar events

@ Lots of energetic particles

@ Missing energy from neutrinos
and xY
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And SUSY?

SUSY often produces very spectacu-
lar events

@ Lots of energetic particles

@ Missing energy from neutrinos

and x!
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SUSY is Hiding....
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Extra Dimensions?

A few ways to look for extra dimensions:
@ One way: look for events with two energetic photons

o Like the Higgs, but much higher energy
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Dark Matter

thermal freeze-out (early Univ.)
indirect detection (now)
———-

Two ways to look for dark matter at

g DM 'SM
the LHC: 3
Q
@ Look for SUSY g
@ Look for generic dark matter é
© DM SM
——

production at colliders

M. Hance Particle Physics at the LHC- July 11, 2013



rk Matter

thermal freeze-out (early Univ.)
indirect detection (now)
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Future Plans



Future Plans

Currently in a 2-year shutdown Restart in 2015 at 13 TeV

o Fix magnets for high energy o What we learn at 13 TeV will

. influence what we do next
@ Fix detector
o Will there be anything new?

© Add new subdetectors o Will we need to build a new

o Upgrade/fix software (bigger) accelerator?
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Conclusions

We’re in a golden age of high energy physics!
@ We see a Higgs consistent with the Standard Model
@ ... but we know nature must have more in store for us! What is it?
@ So far, no signs of anything new at the LHC

o But there’s a lot more data to be taken at higher energies
o Plenty of time to see new physics!

WA CATLAS
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I The Standard Model of particle physics

Years from concept to discovery
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Exotics
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ATLAS SUSY Searches* - 95% CL Lower Limits

ATLAS Preliminary

Status: LP 2013 [Ldt=(44-229) 0" 5=7,8TeV
Model e Ty Jets ET™ [Lam) Reference
T T
MSUGRA(CMSSM ten  36jls Yes 203 |E 1276V anymia) ATLAS.CONF 2013062
HSUGRAGSSH 0 70 Yes 203 [& 1TeV any mia) ATLAS.CONF 2012054
2 o 26ls Yes 203 [a 740 Ge miE)-0Gev ATLAS CONF 2013047
% 0 26ets Yes 203 |& 13Tev. it ATLAS CONF-2013.047
o6t —a Wi Tep  3Bjels Yes 203 & 118 TeV. mi)<200GeY, n(F -0 SmEm(@) | ATLASCONF.2013.062
& g 2eu(SS) 3els  Yes 207 |& 11TeV miF)<ssoce) ATLAS.CONF 2013007
Zep  24jels Yes 47 it 200.4
2 aussi t2r  02jels Yes 207 |& 14TeV g1 ATLAS CONF 2013025
3 GGM (bino NLSP) 2y Yes 48 m(i?)>50Gev 1208.0759
8 | GOM (winoNLSP) Tepsy 0 s 48 mit)>s0Gey ATLAS.CONF-2012.144
= GGM (niggsino-bino NLSP) ¥ 1h o Yes 48 mii)-2206ev 12111
GGM (higgsino NLSP) 2eu(Z) 03jets Yes 58 m(H)>200GeV ATLAS-CONF-2012-152
Graviino LSP 0 monojet Yes 105 mig)>10- oV ATLAS CONF 2012-147
£ -g 0 3b Yes 201 i 12Tev m(?)<600 GeV ATLAS-CONF-2013-061
&8 0 7M0jels Yes 203 |& 1.14TeV. miit) <200Gev ATLAS-CONF-2013.054
e Otes 35 Yes 201 |& 134 TeV <0GV ATLAS.CONE-2013.061
o 0lepn 3b Yes 201 i 13TeV m(i?)<300 GeV ATLAS-CONF-2013-061
o 2b Yes  20.1 by 100-630 GeV' mi y/mncev ATLAS-CONF-2013-053
§ b 2e,pu(SS) 03b Yes 207 |y 430 GeV' miE§)=2 miFs) ATLAS-CONF-2013-007
§-§ Zeu  12b  Yes 47 |STGEV ssoer 1200.4305, 12092102
§ 2ep 02jets  Yes 203 |& 220 GeV. mF5) =m(E;-m(W)-50 GeV, (& )<<m(i}) | ATLAS-CONF-2013-048
§ 2en  02jets Yes 203 & 150440 GeV m(E0)-0GeV, m( (i <10 GV ATLAS CONF-2013.048
s 0 26 Yes 201 |E 150-580 GeV. mEE)<200GeV, m(¥i)-m(i})5 Gev ATLAS-CONF-2013-053
ug ten 16 Yes 207 | 200610 GeV' miE})=0Gev. ATLAS-CONF-2013-037
E‘ =) @ o 2b Yes 205 |& 320-660 GeV' m(T1)=0GeV ATLAS.CONF-2013-024
I 2en2) 1b  Yes 207 |& 500 GeV. i) 150GeV ATLAS.CONF 2012.025
B h-oh+2Z 3en(2) 1b Yes 207 |& 520 GeV. (B1)=m(i1)+180 GeV. ATLAS-CONF-2013-025
[ 2en 0 ves 203 85315 GeV miE-0GeV s cour s s
=3 i 2eu 0 Y 203 125450 GV
T2 (1) 2r 0 Yes 207 180330 GeV
o L"[(vv) i 3en 0 Yes 207 600 GeV. m)
Fidowitzid e 0 Yes 207 315Gev
Direct ¥4 ¥ prod., long-lived f; 0 1jet Yes 47 ter(fi)<10ns. 1210.2852
B g Siabi. soppod & A nacron 0 sies s 229 |8 857Gev 100GV, 10s<r(E)<1000s | ATLAS.CONF 2013057
S5 GMsB stable 125 0 BT 50 CoNF-2013.058
27§ Direct # prod. stablo o 7 120 0 - 159 meR)-mi) ATLAS-CONF-2013.058
g h«wg \nng lived 7§ 2y 0 Yes 47 oasr(it)<zns 30456
Feaqu (RPV) T 0 Yes 44 T mmeere! m. g decoupled 12107451
LFV ppst + X, Grme 1t 2en o BT 4010 1122005 P
ppTt X Gemel) + T Tenrr 0 - as 1010, 451005 -
> Biinear APV CMISSM Tew  7iels  Yes 47 @) syt KTLAS-CONF 2012-140
& B S ] o Yes 207 |F 760 GeV 300GV dia>0 ATLAS-CONF-2013-036.
peee ,~>WX, A orrie, eri, Beu+T 0 Yes 207 |& 350 GeV' miF5)>80 GeV, i33>0 ATLAS-CONF-2013-036.
-a0a o Gjs - 48 = 1210481
g-hit hiobs 2e,u(SS) 03b Yes 207 |& 880 GeV. ATLAS-CONF-2013-007
g Scoler oo 3 ajels - 46 |soon | 100287Gev. il it fom 11102693 2104826
g WimP ‘M'fﬂlﬂm" (DS, Dirac ) 0 mono-et  Yes  10.5  |iSSCHEIET s eE m(x)<80 GeV, limit of <687 GeV for DB ATLAS-CONF-2012-147
L
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R SmE ° assscae

a selection of the available mas

limits on new states or phenomena is shown. Al limits quoted are observed minus 1 theoretical si

[Tev]

ignal cross section uncertainty.
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