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Outline

• The Standard Model of particle physics
and it’s problems

• The Tevatron, CDF and DØ

• Precision measurements of the Standard
Model

• Searches for the Unknown

• Outlook and Conclusions
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Fundamental Particles and Forces

• Matter
– is made out of fermions

• Forces
– are mediated by bosons

• Higgs boson
– breaks the electroweak

symmetry and gives mass to
fermions and weak gauge
bosons

Amazingly successful in describing precisely 
data from all collider experiments
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The Standard Model Lagrangian

gauge sector

 ν mass sector

EWSB sector

flavour sector

… and beyond?… and beyond? supersymmetry (many variants)
extra spacetime dimensions
compositeness
strong electroweak symmetry
breaking
…
something new?!
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Problem I:
What is the Dark Matter?

Standard Model only accounts for
20% of the matter of the Universe
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Problem II:
Where did all the Antimatter go?

• Not explained by Standard Model

Early Universe Universe today
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Problem III: Hierarchy Problem

• Why is gravity so weak?
– MW/MPlanck ~1016 or GF/GN~1032!
– Free parameter m2

H
tree needs to be

“finetuned” to cancel huge
corrections

• Can be solved by presence of
new particles at M ~1 TeV
– Already really bad for M~10 TeV

m2
H ≈ (200 GeV)2 = m2

H
tree + δ m2

H
top + δ m2

H
gauge + δ m2

H
higgs

[M. Schmaltz]
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(Some) More Problems …
• Matter:

– SM cannot explain number of
fermion generations

– or their large mass hierarchy
• mtop/mup~100,000

• Gauge forces:
– electroweak and strong

interactions do not unify in SM
– SM has no concept of gravity

• Higgs boson:
– Has not yet been found: mH=?

• What is Dark Energy?

Supersymmetry (SUSY) can solve
some of  these problems

                         log10 of Energy
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SUSY can solve some problems
• Supersymmetry (SUSY)

– Each SM particle gets a partner differing
in spin by 1/2

• Unifications of forces possible
– SUSY changes running of

couplings
• Dark matter candidate exists:

– The lightest neutral partner of the
gauge bosons

• No (or little) fine-tuning required
– Radiative corrections to Higgs

acquire SUSY corrections
• Cancellation of fermion and

sfermion loops

with SUSY

Mass of supersymmetric particles 
must not be too high (~TeV)

SMwithout SUSY

with SUSY

             Energy in GeV
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Already happened in History!

• Analogy in electromagnetism:
– Free electron has Coulomb field:
– Mass receives corrections due to Coulomb field:

• me
2=me

2+EC/c2

• With re<10-17 cm:
– Solution: the positron!

Problem was not as bad as today’s but solved
by new particles:  anti-matter

<<mec2

[H. Murayama]
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Paul Dirac’s View of History
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Beyond Supersymmetry
• Strong theoretical prejudices for SUSY being true

– But so far there is a lack of SUSY observation….

• Need to keep an open eye for e.g.:
– Extra spatial dimensions:

• Addresses hierarchy problem by making gravity strong at TeV scale
– Extra gauge groups: Z’, W’

• Occur naturally in GUT scale theories
– Leptoquarks:

• Would combine naturally the quark and lepton sector
– New/excited fermions

• More generations? Compositeness?
– Preons:

• atom⇒nucleus ⇒ proton/neutron ⇒ quarks ⇒ preons?
– … ????: something nobody has thought of yet
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Confusion among Theorists?

[Hitoshi Murayama]
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Tevatron Run II

p p
_√s=1.96 TeV
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CDF and DØ Detectors

• Multi-purpose detectors arranged like an onion around collision:
– Tracking system inside magnetic field:

• measure momenta and charge of charged particles
– Electromagnetic and hadronic calorimeters

• Energies of electrons, photons and jets (quarks)
– Muon detector

• Identification (and momentum measurement) of muons
• About 1 million separate readout channels per detector
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Tevatron Luminosity

Results shown today: ∫Ldt=1-2.5 fb-1



17

X
p

xBj

Q2

The Proton

• It’s complicated:
– Valence quarks
– Gluons
– Sea quarks

• Exact mixture depends
on:
– Q2: ~(M2+pT

2)
– xBj: fractional momentum

carried by parton
• Hard scatter process:

p
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Processes and Cross Sections

• Cross section:
– Total inelastic cross section is

huge
• Used to measure luminosity

• Rates at e.g. L=1x1032 cm-2s-1:
– Total inelastic: 70 MHz
– bb: 42 kHz
– Jets with ET>40 GeV: 300 Hz
– W: 3 Hz
– Top: 25/hour

• Tricky to select the interesting
events
– Mostly fighting generic jets!

Jet ET>20 GeV

Jet ET>40 GeV

7x103

 3x103

2.5x105

2.8x106

108

109

1010

300

1012

Events/fb-1
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Jet Cross Sections
Inclusive jets:
processes qq, qg, gg
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Di-Jet Cross Section

Probe Q2~106 GeV2 ⇔ distances of 10-18 m
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Di-Jet Cross Section

Agreement with theory over full mass range
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W’s and Z’s

• Z mass reconstruction
– Invariant mass of two leptons

• W mass reconstruction
– Do not know neutrino pZ

– No full mass resonstruction
possible

– Transverse mass:
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W and Z Cross Section Results
σTh,NNLO=2687±54pb σTh,NNLO=251.3±5.0pbW Z

Data agree with theory to 2% precision
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The Electroweak Precision Data

• Precision measurements of
– muon decay constant (GF) and fine structure constant (α)
– Z boson mass and properties (LEP,SLD)
– W boson mass (LEP+Tevatron)
– Top quark mass (Tevatron)
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Lepton Energy Scale and Resolution

Systematic uncertainty on momentum scale: 0.04%

Υ→µµ

Z→µµ

Z→ee
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W Boson Mass

xxx

MW=80398 ± 25 MeV
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• Mainly produced in pairs via the strong interaction

• Decay via weak interaction

Top Quark

85%

Br(t →Wb) ~ 100%

15%
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   Top Quark Mass

• Rather large pure samples
available:
– 371 events: S:B=5:1

• Perform simultaneous fit for
– Top quark mass
– Jet energy scale (MW=Mjj)

• dominant systematic uncertainty
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Mass of the Top Quark

Mtop = 172.6 +/- 1.4 GeV/c2
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mW, mtop and mHiggs

• Indirectly: mH<160 GeV @ 95% CL
– mH=87+36 -27 GeV

• Directly (LEP): mH>114 GeV @ 95%CL
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Direct Higgs Cross Section Limit

• Ratio of limit to SM about 3.7 (1.1) for mH=115 (160) GeV/c2

– more data coming and experimental improvements ongoing
• Can the Tevatron say anything before the LHC?

– Maybe this summer at high mass!

σ/σSM=3.7
σ/σSM=1.1
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Searches for the Unknown
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Supersymmetry (SUSY)

• SM particles have supersymmetric partners:
– Differ by 1/2 unit in spin

• Sfermions (squarks, selectron, smuon, ...): spin 0
• gauginos (chargino, neutralino, gluino,…): spin 1/2

• No SUSY particles found as yet:
– SUSY must be broken: breaking mechanism determines phenomenology
– More than 100 parameters even in “minimal” models!

γ

G~G
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Mass Spectrum and Unification

• Lightest SUSY particle (χ1
0) is Dark Matter candidate (if stable)

• Models predict mass relations: M(g)≈3M(χ 1±) ≈6M(χ 10)

ewk scale GUT scale

~
~ ~ ~

Colored
particles

Weak
particles
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• Strong interaction => large
production cross section
– for M(g) ≈ 300 GeV/c2:

• 1000 event produced/ fb-1

– for M(g) ≈ 500 GeV/c2:
• 1 event produced/ fb-1

Generic Squarks and Gluinos

• Squark and Gluino
production:
– Signature: jets and Et

~

Missing Transverse 
Energy

Missing Transverse 
Energy

Jets

Phys.Rev.D59:074024,1999
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Signature depends on q and g Masses

• Consider 3 cases:
1. m(g)<m(q)

2. m(g)≈m(q)

3. m(g)>m(q)

~ ~

~ ~

~ ~

Optimize for different signatures in different scenarios

~ ~

⇒

⇒

⇒
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The Jets + Missing ET Data

Data in agreement with Background Expectation
=> M(gluino)>308 GeV/c2, M(squark)>379 GeV/c2
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Trileptons: Another Look for SUSY

• Search for partners of W
and Z boson
– Decaying via leptons

• Signal:
– 3 leptons and missing ET

~
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The Trilepton Data

• Also consistent with background expectations
– M(chargino)>140 GeV/c2  at 95% confidence level
– rather model-dependent though
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Solving the Hierarchy Problem
with Extra Dimensions

• String theory:
– There are more than 3 spatial

dimensions
• Large Extra Dimensions

(Arkhani-Hamed, Dimopoulos, Dvali)

– Electroweak and strong
interaction live in our
dimensions

– Gravity lives also in extra
dimensions

– R=radius of extra dimensions
• R=100 µm - 1 fm for n=2-7

G

MPl
2 ~ RnMPl(4+n)

(2+n) 
Other models:
e.g. Randall-Sundrum
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Possible Experimental Signatures

Virtual exchange Direct emission
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Dielectron and Diphoton
Mass Spectra

• Data agree with background prediction
– No evidence for mass peak or deviation in tail
– MG>270-890 GeV/c2 (depending on coupling) in RS model

ee γγ
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Monojets and Monophotons

• Data agree with background
– N=6: MD>  950 GeV or R < 10,000 fm
– N=4: MD>1060 GeV or R < 0.3  fm
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The next generation:
the Large Hadron Collider

p p
√s≈14 TeV
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LHC prospects

• LHC will (at latest) find out if
– The Higgs mechanism explain

electroweak symmetry breaking
– The hierarchy problem is solved

by new physics at the TeV scale
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Conclusions and Outlook
• Tevatron & CDF and DØ experiments operating well

 4 fb-1 delivered to experiments

• Physics result cover broad range:
 QCD thoroughly being tested:

 works very well even in complicated final states!
 Electroweak precision data getting more and more precise:

♣ΔmW/mW=0.03% , Δmtop/mtop=0.8% => mH<160 GeV/c2 @95%CL
 Searches beyond the Standard Model

 Many searches but no sign of new physics yet
 Precision test flavor sector

• Anticipate to double data by 2010
 Vigorous hunt of the Higgs boson

 And continuing pursuit of new phenomena
 Continue precision tests of QCD, flavor and electroweak sectors

 LHC will start operation later this year
 Full exploitation of electroweak energy scale
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Backup Slides
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Sparticle Cross Sections
Cr
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T. Plehn, PROSPINO

100 events per fb-1

100,000 events per fb-1

Tevatron

LHC
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dominant: gg→ H, subdominant: HW, HZ

σ
(p

b)

Higgs Production at the Tevatron
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W/Z+Higgs with H→bb

• For mH<135 GeV/c2:
– WH→lνbb, ZH →llbb, ZH →ννbb

• Invariant mass of dijet-system corresponds to
Higgs boson mass
– Additional discrimination using likelihood/neural

network techniques

ZH→ννbb

115 GeV Higgs
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• Higgs mass reconstruction impossible due to
two neutrinos in final state

• Make use of spin correlations to suppress WW
background:

– Higgs has spin=0
– leptons in H → WW(*) → l+l-νν are collinear

• Main background: WW production

H → WW(*) → l+l-νν

160 GeV Higgs
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Supersymmetry Searches


