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Particle Physics from Tevatron to LHC: 
what we know and what we hope to discover 
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Outline 
  Introduction 

  Outstanding problems in particle physics  
  and the role of hadron colliders 

  Current and near future colliders: Tevatron and LHC 
  Hadron-hadron collisions 

  Standard Model Measurements 

  Tests of QCD 
  Precision measurements in electroweak sector 

  Searches for the Higgs Boson  
  Standard Model Higgs Boson 
  Higgs Bosons beyond the Standard Model 

  Searches for New Physics 
  Supersymmetry 
  High Mass Resonances (Extra Dimensions etc.) 

  First Results from the 2009 LHC run 
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Outstanding Problems in Particle Physics 
and the role of Hadron Colliders 
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Fundamental Particles and Forces 

  Matter  
  is made out of fermions 

  Forces  
  are mediated by bosons 

  Higgs boson 
  breaks the electroweak 

symmetry and gives mass to 
fermions and weak gauge 
bosons 

Amazingly successful in describing precisely  
data from all collider experiments 
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The Standard Model Lagrangian 

gauge sector 

 ν mass sector 

EWSB sector 

flavour sector 

… and beyond? supersymmetry (many variants) 
extra spacetime dimensions 
compositeness   
strong electroweak symmetry 
breaking 
… 
something new?! 

 
 
 

 
[W. J. Stirling] 



6


Problem I: Where is the Higgs boson?  
  Precision measurements of  

  MW  =80.399 ± 0.023 GeV/c2 

  Mtop=173.1    ± 1.2    GeV/c2 

  Precision measurements on Z pole  

  Prediction of higgs boson mass within 
SM due to loop corrections 
  Most likely value: 87+35

-26 GeV 

  Direct limits at 95% CL 
  LEP: mh>114.4 GeV 
  Tevatron: mh<163 or mh>166 GeV 

  Indirect: 
  mh<157 GeV  at 95% CL 
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Problem II: What is the Dark Matter? 

Standard Model only accounts for  
20% of the matter of the Universe 
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Problem III:  
Where did all the Antimatter go? 

  Not explained by Standard Model 

Early Universe
 Universe today
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Problem IV: Hierarchy Problem 

  Why is gravity so weak? 
  MW/MPlanck ~1016 or GF/GN~1032! 
  Free parameter m2

H
tree needs to be 

“finetuned” to cancel huge 
corrections 

  Can be solved by presence of 
new particles at M ~1 TeV 
  Already really bad for M~10 TeV 

m2
H ≈ (200 GeV)2 = m2

H
tree + δ m2

H
top + δ m2

H
gauge + δ m2

H
higgs 

[M. Schmaltz] 
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(Some) More Problems … 

  Matter: 
  SM cannot explain number of fermion 

generations 
  or their large mass hierarchy 

  mtop/mup~100,000  
  Gauge forces: 

  electroweak and strong interactions do 
not unify in SM 

  SM has no concept of gravity 
  What is Dark Energy? 

“Supersymmetry” (SUSY) can solve  
some of  these problems 

                         log10 of Energy 
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SUSY can solve some problems  
  Supersymmetry (SUSY) 

  Each SM particle gets a partner differing 
in spin by 1/2  

  Unifications of forces possible 
  SUSY changes running of 

couplings 
  Dark matter candidate exists: 

  The lightest neutral partner of the 
gauge bosons 

  No (or little) fine-tuning required 
  Radiative corrections to Higgs 

acquire SUSY corrections 
 Cancellation of fermion and 

sfermion loops 

with SUSY


Mass of supersymmetric particles  
must not be too high (~TeV) 

SM
without SUSY


with SUSY


             Energy in GeV
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Beyond Supersymmetry 

  Strong theoretical prejudices for SUSY being true 
  But so far there is a lack of SUSY observation…. 

  Need to keep an open eye for e.g.: 
  Extra spatial dimensions:  

  Addresses hierarchy problem: make gravity strong at TeV scale 
  Extra gauge groups: Z’, W’ 

  Occur naturally in GUT scale theories 
  Leptoquarks: 

  Would combine naturally the quark and lepton sector 
  New/excited fermions 

  More generations? Compositeness? 
  Preons: 

  atom⇒nucleus ⇒ proton/neutron ⇒ quarks ⇒ preons? 
  … ????: something nobody has thought of yet 
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Confusion among Theorists? 
[Hitoshi Murayama] 

Need experiments to figure out which (if any)  
represents Nature 
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Current Hadron Colliders:  
Tevatron and LHC 



The Role of Colliders 
  Colliders have been a key tool for discovering most 

particles we know today, e.g.: 
  Anti-proton (LBNL, 1955) 
  Quarks (SLAC 1969) 
  W- and Z-boson (CERN, 1983) 
  Top-quark (FNAL, 1994) 
  … plus many more 

  Basic principle follows from E=mc2 

  If collider energy ≥ mass of particle the particle can be 
produced 

  Collider types to date 
  Hadron colliders (protons and ions)  
  Electron colliders 15


1930, 80 keV, 4.5cm
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Why a Hadron Collider? 
  Disadvantages: 

  Hadrons are complex objects 
  High multiplicity of other stuff 
  Energy and type of colliding parton (quark, gluon) unknown 

  Kinematics of events not fully constrained 

  Advantage: 
  Can access higher energies 

Hadron collider

(collision of ~50 point-like particles)


[Karl Jakobs]


Lepton Collider

(collision of two point-like particles)
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e+e- vs Hadron Colliders 

  Circular colliders: 
  Pro: 

  Reuse their power on each turn 

  Con: 
  Synchrotron radiation reduces 

energy of particles 
  Problem worsens with m4 

  Linear colliders: 
  Particle sees each component 

just once 
  Now more cost-effective for 

electrons than circular collider 
=> proposal of ILC (=International 
Linear Collider) 

Energy loss

per turn:

Energy loss:

e vs p
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The Tevatron 
  pp collider: 

  6.5 km circumference 
  Beam energy: 980 GeV 

  √s=1.96 TeV 
  36 bunches: 

  Time between bunches: 
Δt=396 ns 

  Main challenges: 
  Anti-proton production and 

storage 
  Irregular failures: 

  Quenches 

  CDF and DØ experiments: 
  700 physicists/experiment 

Chicago
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Tevatron Integrated Luminosity 

Nevent= cross section x ∫Ldt x Efficiency 

∫ Ldt= 8.8 fb-1


Given by Nature 

(calculated by theorists)
 accelerator


Detector 

(Experimentalist)
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Tevatron Instantaneous Luminosity  

•  peak luminosity of 3.5x1032 cm-2 s-1  

•  took many years to achieve this! 
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The Experimental Challenge 

  Measured hits in detector  
  => use hits to reconstruct particle paths and energies 
  => estimate background processes    
  => understand the underlying physics 

Higgs


Supersymmetry
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Particle Identification 
Detector designed to separate electrons, photons, muons, neutral and 
charged hadrons
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CDF 
  Core detector operates since 1985: 

  Central Calorimeters 
  Central muon chambers 

  Major upgrades for Run II: 
  Drift chamber: COT 
  Silicon: SVX, ISL, L00 

  8 layers 
  700k readout channels 
  6 m2 

  material:15% X0 
  Forward calorimeters 
  Forward muon system 

  Improved central too 
  Time-of-flight 
  Preshower detector 
  Timing in EM calorimeter 
  Trigger and DAQ  
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Some CDF Subdetectors 
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DØ Detector 

  Retained from Run I 
  Excellent muon coverage 
  Compact high granularity LAr 

calorimeter 
  New for run 2: 

  2 Tesla magnet 
  Silicon detector 
  Fiber tracker 
  Trigger and Readout 
  Forward roman pots 
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DØ Detector 
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Detector Operation 

  Data taking efficiency about 75-85% 
  Depending on which components are needed for analysis 
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The Large Hadron Collider (LHC) 

p
 p


√s≈14 TeV


Circumference: 28 km
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Design LHC and Tevatron Parameters 

  Factor of ~1000 more powerful than Tevatron  
  7 times more energy 
  Factor 3-30 times more luminosity 
  Physics cross sections factor 10-1000 larger  

  First collisions planned at end of 2009 
  Aims to reach √s=7 TeV in 2010  

LHC  
(design) 

Tevatron 
(achieved) 

Centre-of-mass energy 14 TeV 1.96 TeV 
Number of bunches 2808 36 
Bunch spacing 25 ns 396 ns  
Energy stored in beam 360 MJ 1 MJ 
Peak Luminosity 1033-1034 cm-2s-1 3.5 x 1032 cm-2s-1 

Integrated Luminosity / year 10-100 fb-1 ~2 fb-1 
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2010/11 LHC vs Tevatron Parameters 

  Power of LHC comparable to 10 years Tevatron  
  3.5 times more energy 
  10 times less luminosity 
  Physics cross sections factor 10-1000 larger  

  Will discuss this in detail later 

LHC  
(plan for 2010/11) 

Tevatron 
(achieved) 

Centre-of-mass energy 7 TeV 1.96 TeV 
Number of bunches ≤ 720 36 
Bunch spacing 50 ns 396 ns  
Peak Luminosity ~1032 cm-2s-1 3.5 x 1032 cm-2s-1 

Luminosity by end of 2011 1 fb-1 ~9 fb-1 
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LHC Construction 

April 26th 2007

Descent of last magnet


Cryostating    425 FTE.years 

Cold tests       640 FTE.years 
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ATLAS and CMS Detectors 

Weight 
(tons)


Length 
(m)


Height (m)


ATLAS
 7,000
 42
 22


CMS
 12,500
 21
 15


~2000 Scientists per experiment  
+ many engineers and technicians 
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ATLAS and CMS in Pisa 

ATLAS CMS 
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Detector Mass in Perspective 

CMS is 30% heavier than the Eiffel tower 

CMS 

Eiffel 
tower 
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Silicon Tracking Detectors 

  Silicon strip and pixel 
detectors 
  Pixels used for first time at 

hadron colliders 
  Huge! 

  area of CMS silicon ~200 m2 
  Like a football field! 
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Muon Systems and Calorimeters 
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Enormous Data Volumes 

  Pushing the computing limits!  
  1 second of LHC data: 1,000 GigaBytes 

  10,000 sets of the Encyclopedia Britannica 

  1 year of of LHC data: 10,000,000 GB 
  25 km tower of CD’s (~2 x earth diameter) 

  10 years of LHC data: 100,000,000 GB 
  All the words spoken by humankind since 

its appearance on earth  

  Solution: the “Grid”  
  Global distribution of CPU power 

  More than 100 CPU farms worldwide share 
computing power 
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Conclusion of 1st Lecture 

  Hadron Colliders  
  can address many of the problems with the Standard Model 

  Higgs boson 
  Physics beyond the Standard Model (e.g. Supersymmetry) 

  access higher energies than lepton colliders 
  Thus higher mass particles 

  are experimentally challenging 
  Many uninteresting background processes 
  The collisions themselves are complex 

  Current colliders: 
  Tevatron is running since 2001 

  Planned to run at least until Fall 2010 
  LHC started last year as the world’s highest energy collider 

  Highest energy: 2.36 TeV 
  2010/2011 run: about 3.5 times higher energy than Tevatron 


