Oscillation (wiggles) in the US BM modules

A. Ciocio - LBNL

Oscillation Status

Of 142 modules tested – 128 LTT test done 62% have wiggles 17% only in negative 44% only on both pos/neg

Scurves taken from cold test (except for modules that didn't go through LTT yet)

• Difference in the oscillation results for cold/warm

(cold is much worse – in same cases scurves at warm don't show oscillation while at cold yes)

Scurves Oscillation – first study

- Modules where tested in multiple combinations of active chips or using the trim to displace the threshold. Oscillation disappears (or is significantly reduced)
 - when switching activity is reduced by isolating every other chip
 - or excluding only one chip in a particular case
 - setting the shaper current much lower than the nominal value (ISH=20).
 - trim every other channel thresholds (by 5 mV) namely changing
 - the number of discriminator transitions at any given threshold

This indicates that this is a regenerative effect involving many channels and that the number of channels is more important than the geometric arrangement of the channels

- We introduced a method to quantify the oscillation (Abe's plot)
 - We fit the region of low threshold (the first 10 points of the ln(occ) plot)
 - . which is significantly larger for most of the chips with large wiggles
 - By looking at the mean square deviation of the fit we can identify all but three cases of oscillation
- No oscillation was found at the hybrids level (except in two cases)
- The grounding scheme has been checked and we don't see evidence of pick up noise (we also introduced noise filters cards)
- No correlation was found with hybrid Lot

Scurves Oscillation – 2nd derivative

To mathematically decide on when the module has oscillation, and to locate at what threshold the oscillation occurs, we calculate the 2nd derivative of the log(Occ) vs threshold

f(x+d1)/d1 + f(x-d2)/d2 - f(x)/d1 - f(x)/d2

This method works well up to 0.3 fC and above that statistics dominate the results

Scurves Oscillation – Residuals

Using the hit distributions we calculate the residuals of the fit with a binomial distribution with the same average occupancy

A calculated binomial curve is plotted for threshold = 45 mv.

Scurves Oscillation – Residuals

This method has been introduced locally in the Noise Occupancy test And made available to be used by other group

Scurves Module 00061 - link 0

7

Scurves Module 00061 - link 1

Scurves Module 00141 - link 0

Scurves Module 00141 - link 1

Scurves Module 00106 - link 0

Scurves Module 00106 - link 1

Scurves Oscillation – Threshold Range

